An efficient weighted nearest neighbour classifier using vertical data representation

نویسندگان

  • William Perrizo
  • Qin Ding
  • Maleq Khan
  • Anne M. Denton
  • Qiang Ding
چکیده

The k-nearest neighbour (KNN) technique is a simple yet effective method for classification. In this paper, we propose an efficient weighted nearest neighbour classification algorithm, called PINE, using vertical data representation. A metric called HOBBit is used as the distance metric. The PINE algorithm applies a Gaussian podium function to set weights to different neighbours. We compare PINE with classical KNN methods using horizontal and vertical representation with different distance metrics. The experimental results show that PINE outperforms other KNN methods in terms of classification accuracy and running time. An efficient weighted nearest neighbour classifier 65

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal weighted nearest neighbour classifiers

We derive an asymptotic expansion for the excess risk (regret) of a weighted nearest-neighbour classifier. This allows us to find the asymptotically optimal vector of nonnegative weights, which has a rather simple form. We show that the ratio of the regret of this classifier to that of an unweighted k-nearest neighbour classifier depends asymptotically only on the dimension d of the feature vec...

متن کامل

Using Weighted Nearest Neighbor to Benefit from Unlabeled Data

The development of data-mining applications such as textclassification and molecular profiling has shown the need for machine learning algorithms that can benefit from both labeled and unlabeled data, where often the unlabeled examples greatly outnumber the labeled examples. In this paper we present a two-stage classifier that improves its predictive accuracy by making use of the available unla...

متن کامل

A Nearest Neighbor Weighted Measure In Classification Problems

A weighted dissimilarity measure in vectorial spaces is proposed to optimize the performance of the nearest neighbor classifier. An approach to find the required weights based on gradient descent is presented. Experiments with both synthetic and real data shows the effectiveness of the proposed technique.

متن کامل

Arabic text classification using k-nearest neighbour algorithm

Many algorithms have been implemented to the problem of Automatic Text Categorization (ATC). Most of the work in this area has been carried out on English texts, with only a few researchers addressing Arabic texts. We have investigated the use of the K-Nearest Neighbour (K-NN) classifier, with an Inew, cosine, jaccard and dice similarities, in order to enhance Arabic ATC. We represent the datas...

متن کامل

Hesitant Fuzzy k-Nearest Neighbour (HFK-NN) Classifier for Document Classification and Numerical Result Analysis

This paper presents new approach Hesitant Fuzzy K-nearest neighbour (HFK-nn) based document classification and numerical results analysis. The proposed classification Hesitant Fuzzy K-nearest neighbour (HFKnn) approach is based on hesitant Fuzzy distance. In this paper we have used hesitant Fuzzy distance calculations for document classification results. The following steps are used for classif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJBIDM

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007